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A theory for the transport of a tracer in flow dominated by turbulence and jets is
developed and tested. Such a system can be taken as a model either for the stirring
of true tracers in the atmosphere and ocean, or, less obviously, for the stirring of
baroclinic potential vorticity by non-zonal flow in the ocean. The flow is generated by
two-dimensional turbulence with a mean vorticity gradient (β) and forced randomly
and isotropically at small scales. The tracer transported by the flow is forced by a
mean tracer gradient that is arbitrarily oriented with respect to the mean vorticity
gradient. Such a tracer can be decomposed into two independent tracers: one forced
by a gradient that is parallel to the vorticity gradient (and so is stirred across jets), and
another that is forced by a mean gradient that is perpendicular to the mean vorticity
gradient (and so is stirred along jets). The turbulent transport of the tracer across
jets has been discussed in previous research, and is well-described by mixing-length
theory. Here it is shown that the transport of the tracer along the jets is described
by shear dispersion, but with a diffusivity determined by the across-jet mixing. Even
at only moderate levels of anisotropy, the along-jet transport is much larger than the
corresponding across-jet transport, consistent, for example, with observations from
surface floats in the Pacific.

1. Introduction
The statistical description of tracer transport in turbulent flows is a prevalent

concern in atmospheric and oceanic fluid dynamics, as well as other branches of
environmental science. In the parameterization of turbulent tracer transport in coarse-
resolution numerical climate models, for example, the problem is often treated as
isotropic down-gradient diffusion, regardless of the complexity of the advecting flow.
This is strictly appropriate only when the advecting flow is isotropic with Gaussian
randomness. Atmospheric and oceanic flows, by contrast, are typically anisotropic,
intermittent, and inhomogeneous. Attempts to include the effects of mean flow
anisotropy in a parameterization, as in Smith & Gent (2004), are very recent and
largely kinematic in nature.

The present paper seeks to develop the underlying principles of an anisotropic
tracer flux parameterization from a fundamental perspective. In particluar, we discuss
a theory for the diffusive transport in a flow dominated by jets in a turbulent
background, typical, for example, of β-plane turbulence. This problem was investigated
by Holloway & Kristmannsson (1984) and Bartello & Holloway (1991), but no theory
was provided in these papers for the effective diffusivity in the along-jet direction. The
transport in the cross-jet direction was analysed by these authors with some success,
but their analyses relied on cumbersome statistical turbulence closure models, such as
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the Test Field Model used by Bartello & Holloway (1991). Holloway (1986) proposed a
simplification of the scale found in a similar model (the Markovian Random Coupling
Model), but even the simplification requires two non-dimensional fit parameters, as
well other information in order to work as a usable closure. More recently Smith
et al. (2002) demonstrated that, even in the presence of jets, if the correct velocity
and length scales are used, the cross-jet transport is well-described by a mixing-length
theory, providing a far simpler method of estimation and prediction. A similar scaling
is derived by Held & Larichev (1996) and shown to be relevant to atmospheric heat
transport by Barry, Craig & Thurburn (2002).

Intuitively, the transport in the direction of a jet should exceed that in the direction
across the jet. This is found, for example, in observations of satellite-tracked drifting
buoys in the tropical Pacific (Bauer, Swenson & Griffa 2002), where the surface
velocity field is dominated by zonal flows. The authors’ analysis of those data reveals
zonal diffusivities that are about 7 times larger than meridional diffusivities, consistent
with intuition.

The primary concern of this paper is the development of a predictive theory for
the along-jet transport. It is shown that the along-jet transport is a shear-dispersion
process, controlled by the diffusivity of the background turbulence. In the original
shear dispersion problem treated by Taylor (1953), it is the molecular diffusivity that
acts to disrupt pair displacement flights along the jet axis, but the mechanism is
fundamentally the same as in the present case. A previous theory for the scaling of
the turbulent jets is combined with the tracer transport theory to derive a closure for
the total transport (the diagonal terms of a diffusivity tensor). The theory is shown
to describe, with reasonable accuracy, the results of a series of numerical simulations
of tracer advection by two-dimensional β-plane turbulence, over a range of flow
anisotropy levels.

It is worth noting some of the applications of such a theory. In the ocean, density
is approximately given by a linear combination of temperature and salinity. A second
linear combination of temperature and salinity (called spice), for which the change
in density associated with each component cancels, can be constructed, and this field
effectively acts as a true passive tracer on the range of scales at which mesoscale
eddies are dominant (Klein, Treguier & Hua 1998). If the flow is anisotropic on the
same scales, the transport of spice will itself be anisotropic and isopycnal, and might
be described by the theory presented here.

A less obvious application concerns the transport of baroclinic potential vorticity
in the ocean. In baroclinic turbulence, when the mean flow is not zonal (a situation
common in the ocean), the gradient of the mean baroclinic potential vorticity is not
parallel to the effective mean vorticity gradient, and so the baroclinic potential vorticity
is stirred by velocity components both parallel to and perpendicular to the effective
vorticity gradient. Because baroclinic energy generation is given by the integrated flux
of potential vorticity (see e.g. Larichev & Held 1995), one should thus expect to find
higher eddy energy in regions of non-zonal flow. Such an increase in eddy energy
in the presence of non-zonal flow in numerical models is observed and discussed by
Dubus (1999), Spall (2000) and Arbic & Flierl (2004). The theory presented here can
explain these results, but this application will be presented elsewhere.

The basic model and a preliminary numerical simulation are described in § 2.
The results of the simulation motivate the construction and solution of an analytic
model for the along-jet transport, presented in § 3. The analytic model for the tracer
presumes that the flow is given, but in general this is not the case. Scaling theories
for geostrophic turbulence are used in § 4 to predict the flow statistics, resulting in a



Tracer transport along and across jets 135

closure theory for the diffusivity. The theory is tested against simulations in § 5, and
the paper concludes with § 6.

2. Basic model and a preliminary simulation
We consider a flow governed by the two-dimensional vorticity equation,

ζt + J (ψ, ζ + βy) = F − rζ + Dζ (2.1)

where ζ = ẑ · ∇ × u = ∇2ψ is the vorticity, ψ is the streamfunction, (u, v) = (−ψy, ψx)
is the velocity, β is the mean vorticity gradient, F is a small-scale, isotropic random
forcing, D is a linear (enstrophy) dissipation operator and r is a linear drag coefficient.

The flow advects a tracer with a steady mean gradient

ct + u · ∇(c + Γ · x) = Dc (2.2)

where c is the deviation tracer concentration from the constant mean gradient
Γ =(Γ, Λ), and D is a scale-selective linear dissipation operator.

Given two independent tracers χ and φ that respectively satisfy

χt + u · ∇χ + u = Dχ, (2.3a)

φt + u · ∇φ + v = Dφ, (2.3b)

the original tracer c can be reconstructed from

c = Γ · χ (2.4)

where χ = (χ, φ) (see e.g. Reed & German 1965; Majda & Kramer 1999).
Given the direction of the vorticity gradient in (2.1), one should expect a qualitative

difference in the dynamics of (2.3a) and (2.3b). In the presence of β , it is known that
the steady-state velocity field will be characterized by a series of stable alternating
jets oriented perpendicular to the gradient, along the x-direction, embedded in a
background of small-scale isotropic turbulence (e.g. Rhines 1975; Maltrud & Vallis
1991). In other words, u will be dominated by coherent and elongated structures in
the x-direction, while v will be isotropic and random.

Making the assumption of double periodicity, the variance equations for the two
orthogonal tracers are

∂t〈χ2〉/2 = Dχ + 〈χDχ〉,
∂t〈φ2〉/2 = Dφ + 〈φDφ〉,

where Dχ = −〈uχ〉, Dφ = −〈vφ〉, and 〈〉 denotes a space (or homogeneous) average.
Thus the variance of χ is forced by correlations with the coherent zonal velocity
field, while the variance of φ is forced by correlations with the random isotropic
meridional flow. We will refer to Dχ as the ‘along-jet’ diffusivity and Dφ as the
‘across-jet’ diffusivity.† Mixing-length theory can be used with some skill to predict
Dφ (Smith et al. 2002), while no prior theory for Dχ is known to the author.

A preliminary numerical simulation was performed using a standard pseudo-
spectral model to solve (2.1) and (2.3). The model details are summarized in Smith
et al. (2002). The preliminary simulation has 2562 equivalent grid points, or a max-
imum isotropic wavenumber kmax = 127. The forcing is localized to wavenumbers kf =
80 and the small-scale dissipation is effected by an exponential cutoff filter, and

† In a flux gradient relationship for χ , for example, the transport 〈uχ〉 = − Ddχ̄/dx, but here
the mean gradient dχ̄/dx = 1, so the diffusivity D = −〈uχ〉.
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Figure 1. Snapshots of (a) u, (b) v, (d) χ and (e) φ from the preliminary simulation with
β =1000 and r = 0.2. The overlayed white curve in (a) is the zonal average U = ū. (c) The
PDFs of v (solid line) and u − U (y) (dashed line), and (f ) the PDFs of φ (solid line) and
χ (dashed line). Also plotted are Gaussian probability distributions (dotted line) with same
variances and means as v and φ, respectively.

restricted to wavenumbers k > 85. The forcing is normalized to yield unit overall energy
generation after dissipation by the filter D. Thus where ever it appears from here on,
the upscale energy transfer rate ε is taken to be 1. Unless stated otherwise, all
parameter values are given in ‘spectral units’, with L =2π (in these units, k =1 is the
wavenumber of a wave that just fills the domain). The preliminary simulation used
β = 1000 and r = 0.2.

Snapshots of the two components of the velocity field, and the two tracer fields χ

and φ are shown in figure 1. These reveal the expected presence of zonal jets in u (its
zonal mean is overlayed in white on panel a) and corresponding coherence in χ , as
well as isotropic randomness in v. The φ field faintly shows the presence of jets, since
it is advected by both u and v. Nevertheless, its variance is directly forced only by v.
The number of jets in the flow, or jet wavenumber, will be discussed in § 4.

Panels (c) and (f ) of figure 1 show the probability density functions (PDFs) of
the velocity and tracer fields, respectively. Notice particularly that the PDF for φ is
nearly Gaussian, consistent with the success of mixing-length theory in describing the
across-jet diffusivity (in other words, the cross-jet tracer concentration is consistent
with the solution of a diffusion equation with constant turbulent diffusivity). The
PDFs for v and u − U (y) (where U (y) is the average of u in x and t) similarly
are nearly Gaussian, and importantly, the PDFs have the same widths, implying the
existence of a well-defined background isotropic diffusivity. In the along-jet direction,
pairs of particles are driven long distances apart by large-scale shear in the flow.
In the absence of any small-scale mixing or diffusion, the dispersion should grow
linearly in time without truncation. Thus we expect that the overall tracer variance
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and diffusivity will be much larger for χ than for φ. In this preliminary simulation,
we find Dχ/Dφ =500.

3. A model for the along-jet transport
The structure of the flow in the preliminary simulation suggests the following simple

model: a large-scale mean zonal velocity, independent of x and t , embedded in a
small-scale isotropic turbulent background whose statistics are described by an inverse
cascade process. Denoting the average in x of some function f with an overline, f ,
we define

U = u, u′ = u − U. (3.1)

In the homogeneous system discussed here 〈u〉 =0, and since the background turbu-
lence is assumed isotropic, we define a turbulent velocity scale

vturb = (〈u′2〉 + 〈v2〉)1/2. (3.2)

Since the statistics of the background flow in the preliminary simulation do appear
to be stationary, Gaussian and isotropic, we further assume that the turbulence is
well-described by a positive turbulent diffusivity

κ = Dφ. (3.3)

Given these assumptions and definitions, consider the advection–diffusion equation
in the presence of a large-scale, periodic, smooth mean flow u =(U (y), 0) and a
turbulent diffusivity κ , so that

χt − κχyy = −U (y). (3.4)

The lack of coherent structure in the x-direction, and the periodicity in that direction
allow us to neglect derivatives in x. This is a form of the shear dispersion problem
of Taylor (1953), also discussed by Young, Rhines & Garrett (1982). Several related
models of this type are considered by Bourlioux & Majda (2002).

Allowing an arbitrary mean flow structure, we expand it in a Fourier series

U (y) =

∞∑
n=−∞

Ûne
−ikny

where kn = nπ/L. Assuming χ(t =0) = 0, the model has the solution

χ = −κ−1

∞∑
n=−∞

Ûn

k2
n

(
1 + e−k2

nκt
)
e−ikny. (3.5)

At equilibrium (t � L2/κ), the diffusivity takes on the constant value

Dχ = −〈Uχeqm〉 = κ−1

∞∑
n=−∞

|Ûn|2
k2

n

, (3.6)

where χeqm = limt → ∞ χ . As in the classic problem, the along-jet diffusion is inversely
proportional to the diffusivity, and the tracer is anti-correlated with the velocity. The
unique element of the problem here is the association of the diffusivity with the
background turbulent cascade via (3.3).

The root-mean-square (RMS) concentration variance also equilibrates to a constant
value at large times, given by

χrms =
√

〈|χeqm|2〉 = κ−1

√√√√ ∞∑
n=−∞

|Ûn|2
k4

n

. (3.7)
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In the limit κ → 0, both Dχ and χrms increase proportional to time t and so never
equilibrate.

4. Scaling theory for turbulent flow on the β-plane
Estimates for most of the components of the diffusivity theories discussed above

exist in the literature. We shall review and, where necessary, extend them here. The
end result will be a scaling theory for the along-jet diffusivity, Dχ .

4.1. Prediction for Ljet

The linear vorticity drag constrains the total energy of the system to be E = ε/2r

with only minimal distortion of the inertial range of the inverse cascade (Smith et al.
2002). The results reported in the previous reference demonstrate that a good estimate
of the inverse jet scale (or peak meridional wavenumber) is given by their equation
(6.11), repeated here for convenience:

kjet 	
(

Cββ
2r

2ε

)1/4

, (4.1)

where Cβ is a non-dimensional parameter (but note that Danilov & Gryanik 2004
present evidence that this parameter is not universal, and so it should be used
with caution). That relation was derived in Smith et al. (2002) in two ways (each
method giving a different non-dimensional prefactor), and Danilov & Gryanik (2004)
furthermore suggest the same scaling (but with yet another non-dimensional prefactor)
as an upper bound. Using the form of non-dimensional prefactor in (4.1), the estimate
Cβ = 0.2 seems to fit the simulated data in Danilov & Gryanik (2004) and Smith et al.
(2002), and is close to both the estimate found in Huang, Galperin & Sukoriansky
(2001) and the estimate one can infer from Chekhlov et al. (1996) (both about 0.3).
Smith (2004) uses Cβ =0.2 in a local theory that does a reasonable job of describing
the jet spacings on Jupiter and Saturn. We will take Cβ =0.2 in this paper.

4.2. Prediction for κ =Dφ and discussion of vturb and �mix

Smith et al. (2002) show that the scale on which the jets self-organize (4.1) differs
from the scale of the background turbulent mixing (the across-jet transport). The
latter is found to be the largest scale at which the flow is isotropic, or smallest scale
of anisotropy, given by

kβ =

(
β3

Cε

)1/5

(4.2)

where C 	 6 is the Kolmogorov constant. The RMS isotropic turbulent velocity is
then obtained by integrating the k−5/3 Kolmogorov spectrum up to kβ , giving

vturb 	
(

3

2

)1/2 (
C3ε2

β

)1/5

. (4.3)

Equation (4.3) can be multiplied by the inverse of (4.2) to give the diffusivity suggested
in equation (7.18) of Smith et al. (2002), but this prediction for the across-jet diffusivity
turned out to be about a factor of 2–3 too large. As will be demonstrated in the
next section, a better estimate results if one neglects the non-dimensional parameters,
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replacing them with the factor 2, and is

Dφ 	 2

(
ε3

β4

)1/5

. (4.4)

An important fact here is that the across-jet diffusivity is predicted to be independent
of r , as found in Smith et al. (2002, figure 8).

4.3. Prediction for Urms

A prediction for the RMS jet velocity in β-plane turbulence is discussed briefly by
Smith et al. (2002) for the limit U0 � vturb. Here we develop a more complete estimate,
accurate in the intermediate range when U0 is not much larger than vturb. Again, the
energy constraint proves useful, the total energy being

E 	 1
2
U 2

0 + v2
turb =

ε

2r
(4.5)

where U0 =
√

〈U 2〉. Expression (4.5) is an approximation due to two implicit
assumptions: (i) that 〈u′U〉 =0, and (ii) that 〈u′2〉 = 〈v2〉. Looking at figure 1(a),
we can see that (i) will not generally be true, since correlations between U and u′

are non-zero. Because of this, assumption (ii) will also be inaccurate. Nevertheless,
we proceed, keeping these potential errors in mind. Using relation (4.3) for vturb, this
gives us

U0 =

[
ε

r
− 3

(
C3ε2

β

)2/5
]1/2

. (4.6)

In the limit β → 0, U0 apparently becomes imaginary and then diverges, but this is of
course not so. The scale kβ in (4.2) is only valid in the limit that β is large enough
to yield anisotropic flow. This will be not be the case if the drag is too large or β

too small, as discussed by Smith et al. (2002), who express this limit in their equation
(6.7). A slightly more stringent requirement comes directly from (4.6), which is real
and non-zero only if

β > βc = (32C6)1/2

(
r5

ε

)1/2

. (4.7)

The non-dimensional factor in (4.7) is larger by a factor of 10 than the factor in
Smith et al. (2002), but because of the weak dependence of vturb on β , still allows (4.6)
to give a prediction for U0 when β is so small that almost no anisotropy forms (see
§ 4.4 for evidence). Note also that: (i) by definition U = u → 0 when no anisotropy is
present, and (ii) equivalently, in the same limit of no anisotropy, vturb →

√
ε/r which

sets U0 = 0 via (4.6).

4.4. Overall prediction for Dχ and discussion of expected dependence

In combining estimates (4.1), (4.4) and (4.6) with (3.6) to predict the diffusivity, we
assume a single mode velocity U to make the correspondence clear. Assuming, for
example

U (y) = Ûj sin(kjy + α)

where α is the constant phase, we find that

Dχ =
Û 2

j

2κk2
j

. (4.8)
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Figure 2. Zonal- and time-averaged U (y) =u for each simulation, with β = 50 on the left and
β =4000 on the right (see beginning of § 5). Note that bottom axis is not the same for all plots.

The RMS zonal velocity, predicted by the scaling relation (4.6), is related to the
velocity coefficient via U0 = Ûj /

√
2. Setting kj equal to kjet in (4.1) and the diffusivity

κ = Dφ in (4.4), we then obtain the following prediction for the along-jet diffusivity:

Dχ 	 A

[
ε

r
− B(ε2β−1)2/5

]
(εr5β2)−1/10, (4.9)

where A= (Cβ/2)−1/2/2 	 1.6 and B = 3C6/5 	 26. The form of the predicted diffusivity
is, for fixed ε and r , rapidly increasing at small β (near βc), achieves a maximum at
moderate β (such that ε/r dominates the difference in the brackets), and decreases
weakly (∝ β−1/5) at large β .

5. Numerical investigation of the homogeneous flow statistics
A series of eight simulations was performed to test the diffusivity scalings presented

in § 4. A different value of β (50, 100, 200, 300, 500, 1000, 2000, and 4000) was used for
each simulation. The other parameters were identical to those used in the preliminary
simulation, except that the series simulations used a resolution of 5122, and were
forced at wavenumber kf =160. Figure 2 shows the zonally averaged zonal velocity
U (y) at some point during steady state for each of the simulations. The expected
increase in the number and regularity of the jets is apparent.

The across-jet and along-jet effective diffusivities are plotted in figures 3(a) and
3(b) respectively. Statistics from the simulations are plotted with triangles (�). The
solid line in panel (a) is the predicted across-jet diffusivity κ = Dφ (4.4). The theory
seems to represent the simulated data well. The two curves in panel (b) are as follows.
First, as a fundamental test for the shear-dispersion model, equation (3.6) is applied
directly, using the spectral transforms of U (y) and the simulated values of Dφ for
each run (dotted line with ×-marks). This curve appears consistent with the simulated
data, providing confirmation of the concept. The solid line in panel (b) represents
the overall scaling theory (4.9). All of the theories for all of the constituent parts
derived in § 4 must be combined to form the overall scaling theory for the along-jet



Tracer transport along and across jets 141

0 1000 2000 3000 4000

1

2

3

4

5

6

7

102 103

β β

10–3

10–2
Dφ

Dχ

10–1
(a) (b)

Figure 3. (a) Across-jet diffusivity κ = Dφ and (b) along-jet effective diffusivity Dχ . Triangles
(�) represent statistics from the simulations. The solid line in (a) is prediction (4.4). Solid line in
(b) is theoretical fit from full scaling theory (4.9). Dotted line with ×-marks is semi-theoretical
prediction from (3.6) using spectra of simulated U (y) and simulated Dφ , and so the values for
this curve can only be calculated where simulated data exist.

transport, and so the inaccuracies in the predictions of each constituent scale will
degrade the accuracy of the overall prediction. Note that all predictions shown should
be inaccurate at small β , since as the anisotropy vanishes, we expect Dχ → Dφ . This
is not accounted for in the underlying shear-dispersion model (3.6).

6. Discussion and conclusion
As presented here, the theory applies to β-plane turbulence, but the fundamental

findings are perhaps more general, potentially applicable to any flow with an isotropic
turbulent background and semi-stable anisotropy in the foreground. One could thus
use an independent measure of the isotropic (background) diffusivity, and the observed
structure of a suitably averaged mean flow to calculate the along-jet transport via
(3.6) directly (assuming a coordinate system aligned with the jet or jets), without use
of the scaling theory for the jets presented in § 4.

Lastly, it is worth pointing out that the theory derived above is in fact a theory
for the diagonal terms of the 2 × 2 effective diffusivity tensor K, defined by the
expression 〈uc〉 = 〈uΓ · χ〉 = −KΓ . In this formalism, the fluxes derived above are
Kxx =Dχ and Kyy = Dφ. The off-diagonal terms represent components of the ‘skew
flux’. Rewriting the tensor as a sum of a symmetric and antisymmetric part, it
can straightforwardly be shown that the antisymmetric part represents an advective
transport by an incompressible eddy-induced flow. The off-diagonal terms can be
calculated from the simulations described, but in order to describe their behaviour in
a predictive way, care must be taken in applying the averaging operator. The total
homogeneous average used above gives a single number for each simulation. The
presence of stable jets, however, suggests a finer average. Preliminary results reveal
an eddy-induced velocity that is of the same order, but opposed to, the mean jet flow.
This will be discussed in a later paper.

I acknowledge helpful conversations with R. Ferrari and A. Majda. Although the
decomposition (2.4) of the tracer is discussed in earlier references, I first learned of
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